
Solving economic models for ranges of economic
parameters using deep learning

Master’s Thesis

Submitted in partial fulfillment of the requirements for the degree
of Master of Arts in Banking and Finance

Author

Junlei Chen
Bülachstrasse 7F, 8057 Zürich

18-744-847

junlei.chen@uzh.ch

Supervisor

Prof. Dr. Felix Kübler

Sub-supervisor

Marlon Azinović

Date of Submission: March 10, 2021

Abstract

In this thesis, I introduce a method of solving macroeconomic models for entire
ranges of economic parameters using deep learning. By constructing a loss function
for training the neural network, taking into account the equilibrium conditions (Euler
Equation) and other considerations, I apply the method to solve two different models.1

They feature incomplete markets, idiosyncratic risk, occasionally binding constraint,
non-stationary shock process, and asset pricing with non-trivial market-clearing condi-
tions. The reached accuracy demonstrates that the implemented method can compute
satisfactory approximations. Furthermore, I present a novel algorithm to calibrate the
extended parameters matching with real-world economic indices using gradient descent,
which can bring insights to public policy construction, economic decision-making pro-
cess, etc.2

1The python code implementing the algorithm mentioned in the thesis is linked here: https://

github.com/Junlei-Chen/Master-Thesis.git.
2I would like to thank Prof. Felix Kübler for the valuable comments and guidance. I also extremely

appreciate Marlon Azinović’s dedicated support and research suggestions during the thesis writing.
Furthermore, I acknowledge my flatmates Nina Desboefs, Stefan Schöpf, Peter Szemraj for the exciting
ideas exchange during our lunches and dinners. Finally, my deep and sincere gratitude to my fiancé
Alexander Böhm for his continuous and unparalleled love.

https://github.com/Junlei-Chen/Master-Thesis.git
https://github.com/Junlei-Chen/Master-Thesis.git

Contents

1 Introduction 1

2 Literature Review 2

3 The Benchmark Economic Model 3
3.1 Model Description . 3
3.2 Methodology . 4

4 Deep Learning Implementation 5
4.1 Data Sampling . 5
4.2 Loss Function . 6
4.3 Model Training . 8
4.4 Model Performance . 9
4.5 Parameter Calibration . 12

5 Extending Benchmark Model Input with More Parameters 14
5.1 Input Extension . 14
5.2 Model Performance . 15
5.3 Parameter Calibration . 18

6 A Model Featuring Incomplete Markets with Idiosyncratic Shocks 22
6.1 Model Description . 22
6.2 Data Sampling . 23
6.3 Model Performance . 25
6.4 Parameter Calibration . 30

7 Practical issues 33
7.1 Loss Function Implementation . 33
7.2 Redundant Information for Neural Networks 35

8 Conclusion 37

9 References 39

1 Introduction

Solving macroeconomic models with stochastic, high-dimensional, and strong non-linear
features has been an exceedingly challenging task, due to the notoriously difficult prob-
lem known as the “curse of dimensionality”[3]. However, with the development of state-
of-the-art Deep Learning (DL) algorithms, new methods for addressing this issue are
being developed in recent years (see e.g.[1][5][12]). Additionally, in the context of func-
tional rational expectations equilibrium (FREE)[10], constructing neural networks, which
approximate the equilibrium functions and are trained with gradient-descent based op-
timization seems fairly generic and suitable. The standard approach in the literature to
obtain model solutions for different parameter values is solving the model from scratch
several times using different economic parameters. It has been a rarely explored field
where one could add the entire ranges of economic parameters to s neural network as the
input variables and also calibrate the parameters matching with the targeted economic
indices.

In this thesis I investigate the potential of using neural networks to approximate
model solutions for entire ranges of economic parameters. This thesis mainly contributes
to the scarce research on the parameter estimation process of the algorithms to solve
economic models with deep learning. Additionally, I present a novel algorithm to cali-
brate the concerned economic parameters pinning down related economic indices. Using
the obtained solution to fit real-world data would bring new insights to the process of
policy construction and economic decision-making, etc.

Concretely, I solve two nonlinear dynamic stochastic general equilibrium models.
The first benchmark model is introduced by Brock and Mirman (1972)[4], which intro-
duces the first optimizing growth model with stochastic productivity shocks. I present
the deep learning approach of solving this model with the input extension of discount
factor β and the risk aversion parameter γ and calibrate the parameters with the eco-
nomic target indices and also visualize the interaction between the economic factors.
The second model is a modified version inspired by Heaton and Lucas (1996)[7], with
two types of representative agents, incomplete markets, occasionally binding constraints,
stochastic shocks and equilibrium asset pricing. For this model, I also investigate the
potential of solving it with adding discount factor β into the input space and calibrating
the parameter with real-world data.

The remaining part of the thesis is organized as follows: section 2 gives a brief
review of the related literature. Section 3 describes the benchmark model from Brock
and Mirman (1972)[4] and illustrates the methodology I utilize to solve the model. In
section 4, I present the data sampling process, the loss function construction details, the
training performance of the model, as well as the parameter calibration with discount
factor β. In section 5 I showcase the extension of the algorithm input with risk aver-
sion parameter γ and introduce the multiple parameter calibration algorithm. Section
6 presents this methodology adapted on a more complicated model inspired by Heaton
and Lucas (1996)[7], featuring two types of agents as well as incomplete market assump-

1

tions. Section 7 discusses some practical issues that occurred when solving the models
and programming the implementations which can bring values for further research. Sec-
tion 8 is my conclusion and discusses remaining challenges and possible future research
directions.

2 Literature Review

The approach of solving recursive equilibria numerically with computational methods
can be dated back to the 1970s[11]. However, the research making explicit use of re-
cent developments in machine learning to compute approximate equilibrium in dynamic
models is still relatively rare. I summarize three highly relevant papers in this field as
follows:

Duarte (2018)[5]:
By solving an economic model with structure estimation, this paper success-
fully shows how gradient-based optimization methods can be used to estimate
stochastic dynamic models in the continuous time context. This paper lever-
ages new powerful approximate dynamic programming techniques that allow
for the global solution of high-dimensional stochastic dynamic problems by
augmenting the state space and using deep neural network to learn the mo-
ments by observing raw outcomes of simulations. Different from this paper,
the models I try to solve in my thesis are discrete-time based.
Maliar, Maliar, and Winant (2019)[12]:
This paper introduces a generic unsupervised learning approach that uses
three fundamental objects of economic dynamics - the maximization of life-
time reward, the minimization of the Bellman residuals, and the minimiza-
tion of the Euler equation residuals. This independent work with the use
of Euler equation residuals as a cost function in this paper is similar to the
approach of the algorithm I present in my thesis.
Azinovic, Gaegauf, and Scheidegger (2019)[1]:
This paper introduces the concept of deep equilibrium nets - neural networks
that directly approximate all equilibrium functions and that are trained in
an unsupervised fashion to satisfy all equilibrium conditions along simulated
paths of the economy. The economic models solved are featured with a sub-
stantial amount of heterogeneity, significant uncertainty, and occasionally
binding constraints. They show that deep equilibrium nets can solve rich
and economically relevant models fast and efficiently.
Scheidegger, S. and Bilionis, I. (2019)[13]:
This paper presents a novel computational framework to compute global
solutions of high-dimensional dynamic stochastic economic models on po-
tentially irregularly-shaped geometries. Specifically, applying Gaussian pro-
cess regression in combination with active subspaces and Bayesian Gaussian

2

mixture models, they demonstrate the ability of the framework to learn the
value and policy functions as well as ergodic sets. They also show that their
framework can address parameter uncertainty and can provide predictive
confidence intervals for policies that correspond to the epistemic uncertainty
induced by limited data, which has the similarity to my thesis which extends
the deep learning input space with the economic parameters.

The papers discussed above all presented advanced computational approaches and ef-
ficient techniques used in solving high-dimensional stochastic dynamic models. What
makes my thesis different from these papers’ contribution is that I investigate the pos-
sibility of extending the deep learning input space with the entire ranges of economic
parameters, as well as the parameter calibration with pinning down different real-world
economic targets. Since time preference and risk aversion have always been prime com-
ponents in designing effective policy, I mainly focus on the ranges of discount factor β
and γ extension in this thesis.

3 The Benchmark Economic Model

3.1 Model Description

The benchmark economic model I choose to solve here is the Brock and Mirman (1972)[4]
model. This model provided the first optimizing growth model with unpredictable
(stochastic) shocks. Because this model has the features mentioned above while being
not too complicated and can already be solved analytically I choose it as an appropriate
benchmark model to start with.

The social planner’s goal is to solve the problem:

max E
[∞∑
n=0

βnlogCt+n

]
(1)

s.t.

Kt+1 = Yt − Ct
Yt+1 = At+1K

α
t+1

where At is the level of productivity in period t, which is now allowed to be stochas-
tic. In this model the capital stock is not useful as a state variable: Because capital has
a 100 percent depreciation rate, all that matters to the consumer when choosing how
much to consume is how much income they have at that moment, and not how that
income breaks down into a part due to K and a part due to A.

While trying to solve this model, the first step is to rewrite the problem in Bellman
equation form

Vt(Yt) = max
Ct

logCt + β Et[Vt+1(Yt+1)] (2)

3

and take the first order condition:

u′(Ct) = β Et[At+1αK
α−1
t+1 u

′(Ct+1)]

1

Ct
= β Et

[
At+1αK

α−1
t+1

Ct+1

]
1 = β Et

[
αAt+1K

α−1
t+1

Ct
Ct+1

]
(3)

where αAt+1K
α−1
t+1 ≡ Rt+1. Here, the definition of Rt+1 helps clarify the relationship of

this equation to the usual consumption Euler equation.
Now I show that this FOC is satisfied by the consumption function Ct = κYt, where

κ = 1 − αβ. To see this, first note that the proposed consumption rule implies that
Kt+1 = (1− κ)Yt.

The first order condition says

1 = β Et
[
α
At+1Kα

t+1

Kt+1

κYt
κYt+1

]
= β Et

[
α Yt+1

Kt+1

κYt
κYt+1

]
= β

[
α Yt
Kt+1

]
= β

[
α Yt
Yt−Ct

]
= β

[
α Yt
Yt(1−κ)

]
= β

[
α 1

(1−κ)

]
(1− κ) = αβ

κ = 1− αβ

Therefore, the analytical solution to the Brock and Mirman (1972)[4] model is presented
here. This serves as a benchmark to check the accuracy of the neural network’s output.

3.2 Methodology

The approach I use to solve the model proposed above is to create an algorithm using
a neural network as an approximator, featuring the function mapping the state of the
economy to choices of savings and investment, which corresponds to the equilibrium
conditions. Noticing that, should the solution be correct, the Euler Equation would
hold. Therefore, the loss function is constructed ensuring this condition as well as some
other considerations.

More specifically, I choose to use densely connected feedforward neural networks as
function approximators since they have desirable features as follows. It has been shown

4

that as a type of universal function approximators, neural networks can leverage distinct
local, highly non-linear features, process a large amount of high-dimensional input data,
and have the potential to overcome the curse of dimensionality to some extent when
solving for example partial differential equations and computing optimal stopping rules
(see e.g.[6][2]).

Given hyper-parameters {K, {mi}Ki=1, {σi(·)}Ki=1} and trainable parameters ρ, a neu-
ral network Nρ encodes the mapping

x→ Nρ(x) = σK(WK . . . σ2(W2σ1(W1x + b1) + b2) . . .+ bK), (4)

where Wi ∈ Rmi+1×mi are matrices often referred to as weight matrices, and bi ∈ Rmi+1

are vectors often referred to as bias vectors. The vector ρ represents all entries of the
weight matrices and the bias vectors. K is referred to as the number of layers of the
neural network within the model’s construction, and mi as the number of nodes in layer
i. The nonlinear functions σi are referred to as activation functions and are applied
element-wise to each entry of a vector: σi(x) = [σi(x1), . . . , σi(xmi+1

)]T . Therefore, a
densely connected feedforward neural network is created by a sequence of matrix-vector
multiplications followed by the application of an activation function.

The goal of the algorithm is to approximate the equilibrium function θK : Z×R2 →
R denotes the capital investment functions, such that for all states x := [z, k, β]T ∈
Z × R2, where z ∈ Z denotes the exogenous shock, capital holding k, as well as the
discount parameter β, the Euler equation 3 is always fulfilled.

In order to do so, I combine four elements which are given by: (i) an appropriate
type of function approximators; (ii) a loss function measuring the accuracy of a given
approximation at a given state; (iii) an updating mechanism to improve the approxima-
tion; and (iv) a sampling method for choosing states for updating and the evaluation of
the approximation quality.

Specifically for my algorithm, I choose the multi-layer neural network as a function
approximator. The loss function is constructed using the errors in the equilibrium con-
dition (Euler equation) and the neural network parameters are updated using variants
of gradient descent approaches. To update the parameters of the neural networks, as
well as to evaluate the quality of approximation, I randomly sample state variables for
ranges of feasible numbers to feed into the neural networks.

4 Deep Learning Implementation

4.1 Data Sampling

Within the context of TensorFlow 2.0, it is possible to generate the sample state variables
randomly following some specified distribution. Firstly, I assign necessary parameters to
the Brock-Mirman model as follows (the input extension with the relative risk aversion
parameter γ will be shown in the next section):

5

Relative risk aversion γ Capital share α TFP η

1 0.3 {0.97,1.03}

Table 1: Parameterization of the economic parameters

The total factor productivity (TFP) η takes two values, η ∈ {0.97, 1.03} and evolves
with a transition matrix

Πη =

[
0.6 0.4
0.4 0.6

]
(5)

where Πη
i,j denotes the probability of a transition from the exogenous shock i to exoge-

nous shock j, where i, j ∈ Z. This describes the economy’s tendency to remain in a
booming state rather than turning into a recession and vice versa

For the first period I set the probability for two exogenous shocks to be i.i.d.,
afterwards the shocks evolve with the persistence described above.

Moreover, the ranges for the input state variables and the parameter β is set as
follows:

Capital holding k range Discount factor β range[
0.05, 0.8

] [
0.90, 0.99

]
Table 2: Ranges for input endogenous state variable k and parameter β

4.2 Loss Function

Following Judd (1992)[8] and Azinović, Gaegauf, and Scheidegger (2019)[1], I take the
relative error in the Euler equation, namely equation 3, for capital

eREEcap
x (ρ) :=

β Et
[
αAt+1K

α−1
t+1 Ct+1

−γ]− 1
γ

Ct
− 1. (6)

Using either the relative error or the absolute error obtained from the Euler equation
is equivalent when the equilibrium condition is satisfied. However, the advantage of using
the relative Euler equation error is that its value’s economic meaning is independent of
the utility function. Concretely, it quantifies the consumption changes.

Generally, the unsupervised loss function depends on two components: the parame-
ters of the function approximator ρ and the set of states x at which the desired conditions
are evaluated. The latter is referred to as the training set, which I denote as Dtrain.
Given parameters ρ and a set of states Dtrain, I define the loss function as the mean

6

squared error of the equilibrium condition:

`Dtrain
(ρ) :=

1

|Dtrain|
∑

x∈Dtrain

(
1

N − 1

N−1∑
i=1

(ei,REEcap
x (ρ))2) (7)

The loss function is defined such that optimizing the trainable parameters ρ is made pos-
sible. Therefore, parameters are considered “good”, if they minimize the loss function.
Next I use the gradient descent to optimize the parameters ρ. The gradient descent
approach updates the parameters gradually in the direction in which the loss function
decreases—which is:

ρnewk = ρoldk − αlearn∂`Dtrain
(ρold)

∂ρold
∀k ∈ {1, . . . , length(ρ)}. (8)

Here, I use the gradient descent optimizer Adaptive Moment Estimation (Adam)[9]
which stabilizes the training of neural networks by continually adapting the learning
rate and gradient. In Adam, adaptive learning rates are computed for each parameter.
In addition to storing an exponentially decaying average of past squared gradients, Adam
also keeps an exponentially decaying average of past gradients similar to momentum.
Whereas momentum can be seen as a ball rolling down a slope, Adam behaves like a
heavy ball with friction, which thus prefers flat minima on the error surface. It is shown
empirically that Adam works well in practice and compares favorably to other adaptive
learning-method algorithms.

7

Input layer 1st hidden layer
(relu)

2nd hidden layer
(relu)

Output layer
(softplus)

1

z

k

β

..
.

..
.

k’

1 1

h
3

h
4

h
500

h
2

h
3

h
4

h
500

h
2

Figure 1: Schematic illustration of the neural network architecture for the deep learning
process.

4.3 Model Training

I use a deep neural network with two hidden layers to solve the Brock-Mirman model.
The input layer consists of 1+3 input nodes, representing the constant 1, the exogenous
shock z, the capital holding k, and the discount factor β. After the input layer, the
neural network features two hidden layers with 500 and 500 relu-activated hidden nodes,
respectively. The output layer consists of 1 node, activated with the softplus function
to ensure that the non-negativity constraint is fulfilled. A schematic illustration of the
neural network architecture is given in figure 1.

8

I found that it is very helpful to decrease the learning rate toward the end of the
training procedure, in order to fine-tune the neural network parameters. Therefore,
I switch from the learning rate of αlearn = 1 × 10−4 for the first 10,000 episodes of
training to αlearn = 5 × 10−5 for the second 10,000 episodes of training. The chosen
hyper-parameters are specified in table 3.

Episodes Learning
rate αlearn

Nodes
hidden
layers

Activations
hidden
layers

Activation
output layer

1 - 10,000 1× 10−4 {500, 500} {relu, relu} {softplus}
10,000 - 20,000 5× 10−5 {500, 500} {relu, relu} {softplus}

Table 3: Parameterization of the hyper-parameters.

4.4 Model Performance

Next, I illustrate the performance of the neural network’s approximation for the Brock-
Mirman model. Figure 2 shows the evolution of the loss function during the 20,000
episodes of training. As shown, the loss function decreases quickly during the training
and converges at approximately 10−6. Since the plotted value is in the form of the
squared error, the actual scale of the relative Euler equation is approximately 10−3, which
is quite accurate for a model with 3 state variables and a kinked solution, considering
that the neural networks have not been trained for extremely many episodes. On a
modern CPU, optimization should be done within 15 minutes. It would be dramatically
faster on hardware adapted to deep-learning.

The relative Euler equation errors after training on 1,000 sampled state variables
are summarized in table 4.

mean max min 10 50 90

Relative Euler equation error (%) 0.590 1.103 0.000 0.000 0.041 0.122

Table 4: Relative Euler equation error. The columns show the mean, the max, and the
min errors as well as the 10th, 50th, 90th percentile.

9

Figure 2: Evolution of the loss function during the first 10,000 episodes of training
with learning rate αlearn = 1 × 10−4 and the second 10,000 episodes with learning rate
αlearn = 5× 10−5.

Figure 3: Capital holding this period v.s. Capital holding next period (Neural network
prediction).

Additionally, we can see from figure 3 that the neural network is able to accurately
predict the next period of capital holding for different given state variables and different

10

βs. In the figure it is shown that for each β, there are two different predicted corre-
sponding capital holdings for the next period since I have two different exogenous shocks
TFP η = {0.97, 1.03}. Also, it is intuitive that with larger discount factor β, people
would have the tendency to save more for the next period. To confirm the prediction’s
quality, I also plot the capital holding this period Kt versus the consumption this pe-
riod Ct showed in figure 4. This figure shows that with the realization of a bad shock
TFP η = 0.97 today, people tend to consume less while with a good shock this period
η = 1.03, people would tend to consume more which leads to a larger Ct.

Furthermore, the neural network achieves very satisfactory prediction within the
feasible state variable range. As shown in figure 5, within the feasible range (the 45◦

line crosses the solutions part), the prediction for capital holding next period Kt+1 and
the analytical solution for the policy function Kt+1 = (1− κ)Yt, where κ = 1− αβ, are
not visually distinguishable.

Figure 4: Capital holding this period v.s. Consumption this period (Simulated with
neural network prediction).

11

Figure 5: Prediction from neural network v.s. Analytical solution derived from section
3.1. The parameter β is set as 0.95. The green line shows the 45◦ line where y = x.

4.5 Parameter Calibration

As a next step, I introduce the calibration of parameter β to match real-world data. One
important, common concern is the average interest rate Rt. I simulate 1,000 different
states with 100 evolving periods, then I calculate the mean interest rate predicted by
the neural network model. As we can see in figure 6, the average interest rate has a
strong linear relationship with the range of the discount factor β.

12

Figure 6: Average Interest Rate (Simulated with the prediction) v.s. Range of β.

Figure 7: Empirical Errors v.s. Range of β with rtarget = 1.0925.

Therefore, it is now ready to calibrate the parameter β with different average interest
rates. Here I define an objective function:

objective(βguess, rtarget) := (rsim − rtarget)2 (9)

13

where rtarget is the average interest rate I aim to achieve by calibrating the parameter
βguess, rsim is the simulation that can be predicted using the neural network model.
With this objective function, I can then use the gradient descent approach to find the
right parameter β corresponding to the rtarget.

According to historical records3, the average annual return for S&P500 index since
Jan,1 1871 until Dec,31 2020 is 1.0925. I generate the objective function (empirical
errors) with rtarget = 1.0925 and plot it against ranges of β in figure 7. The gradient
descent approach (I let it run until the objective(βguess, rtarget) < 10−5) gives us the
calibrated βguess = 0.9176, as shown in figure 8 with the βguess updating process.

Figure 8: Evolving of βguess using the gradient descent method.

5 Extending Benchmark Model Input with More

Parameters

5.1 Input Extension

I extend the Deep Learning algorithm to solve the Brock-Mirman model input space
with two economic parameters β and γ at the same time. To do this, I keep the pa-
rameterization of the economic parameters for capital share α and TFP η as shown in
table 1, while extending the input space to x := [z, k, β, γ]T ∈ Z × R3, where z ∈ Z

3Calculated using this definition: Compound Annual Growth Rate (See website calculation tool
here: http://www.moneychimp.com/features/market_cagr.htm).

14

http://www.moneychimp.com/features/market_cagr.htm

denotes the exogenous shock, capital holding k, as well as the discount parameter β and
the relative risk aversion parameter γ.

The ranges for the input state variables and the parameters β and γ are set as
follows:

Capital holding k Discount factor β Relative risk aversion γ[
0.05, 0.8

] [
0.90, 0.99

] [
0.5, 3.0

]
Table 5: Ranges for input endogenous state variable k and parameters β and γ

As in the section 4.1, I sample the input data randomly following uniform distri-
bution with ranges specified above. Moreover, since there is one more input dimension
now, the input layer of the deep neural network now consists of 1+4 input nodes, repre-
senting the constant 1, the exogenous shock z, the capital holding k, the discount factor
β, and the relative risk aversion parameter γ, respectively. Following the input layer,
the neural network still keeps two hidden layers with 500 and 500 relu-activated hidden
nodes. The output layer remains 1 node activated with the softplus function, featuring
the non-negative predicted capital holding next period k′.

Besides, since the input space contains more dimensions now, the training process
is comparatively more “difficult” for the neural network to figure out what the correct
policy function is. I decide to let the training run for longer in order to get better
results. Therefore, I set the learning rate αlearn = 1× 10−4 for the first 30,000 episodes
and switch to αlearn = 1 × 10−5 for the second 30,000 episodes of training. The chosen
hyper-parameters are specified in table 6.

Episodes Learning
rate αlearn

Nodes
hidden
layers

Activations
hidden
layers

Activation
output layer

1 - 30,000 1× 10−4 {500, 500} {relu, relu} {softplus}
30,000 - 60,000 1× 10−5 {500, 500} {relu, relu} {softplus}

Table 6: Parameterization of the hyper-parameters.

5.2 Model Performance

I now illustrate the performance of the neural network approximation on the Brock-
Mirman model with extended input. It is shown in figure 9 that after 60,000 episodes of
training, the loss converges to below 10−6, which implies that the actual scale of loss has
decreases to around 1× 10−3, resulting in a fairly trustworthy prediction performance.

The relative Euler equation errors after training on 1,000 sampled state variables
are summarized in table 7.

15

Figure 9: Evolution of the loss function during the first 30,000 episodes of training
with learning rate αlearn = 1 × 10−4 and the second 30,000 episodes with learning rate
αlearn = 1× 10−5.

mean max min 10 50 90

Relative Euler equation error (%) 0.069 0.518 0.000 0.000 0.054 0.147

Table 7: Relative Euler equation error. The columns show the mean, the max, and the
min errors as well as the 10th, 50th, 90th percentile.

Furthermore, from the figure 10, it is shown that the policy function can be ac-
curately predicted corresponding to different values of γ, keeping β = 0.95 unchanged.
Additionally, in figure 11 one can see that the neural network predicts policy functions
similarly well to figure 4, which is a confirmation of the accuracy of the model’s training
despite the extension of the input space dimension.

16

Figure 10: Capital holding this period v.s. Capital holding next period (Neural network
prediction).

Figure 11: Capital holding this period v.s. Consumption this period (Simulated with
neural network prediction).

17

5.3 Parameter Calibration

In this part, I showcase the potential to target two economic indices simultaneously
with calibration of the parameters β and γ. The two chosen targets are (i) average
interest rate Rt and (ii) relative consumption standard deviation σ(Ct+1

Ct
). The reason

for choosing these two targets is that, intuitively, the discount factor β captures the
mean interest rate Rt while the relative risk aversion parameter γ captures the volatility
of relative consumption evolving.

Based on this, I define the modified objective function:

objective(βguess, γguess, rtarget, σ(c)target) := (
σ(c)sim − σ(c)target

σ(c)target
)2

+(
rsim − rtarget

rtarget
)2

(10)

where rtarget and σ(c)target are the two economic targets: average interest rate Rt and
relative consumption standard deviation σ(Ct+1

Ct
) respectively. Specifically, I use the rela-

tive mean squared error of the two targets instead of the absolute error as in definition 9.
This is due to the fact that using the absolute error would yield very small (almost indis-
tinguishable) values for the objective function, resulting in challenges for the parameter
calibration.

After simulating with 1,000 randomly distributed states with 500 evolving periods,
using β = 0.95 and γ = 1.0, the two simulated targets are achieved: rtarget = 1.0552,
σ(c)target = 0.03396. By setting these two targets in the objective function, as well as
the initial values of βguess = 0.95 and γguess ∈

[
0.5, 1.5

]
, I present the figure 12 showing

the cut-off surface of empirical errors against γ. It is apparent that the minimum point
forms when γ = 1.0, therefore making it possible to calibrate the two parameters β and
γ.

18

Figure 12: Empirical Errors v.s. Ranges of γ with rtarget = 1.0552 and σ(c)target =
0.03396, setting β = 0.95.

Following the same parameter calibration methodology as in section 4.5, I aim to
use the gradient descent approach to find the correct parameters β and γ corresponding
to the rtarget and σ(c)target. However, since it is an optimization problem with multiple
objectives, the basic gradient descent approach has proven to be challenging for finding
the minimal error value. Therefore, I utilize the Adam approach here as well to update
the two parameters β and γ.

The parameter’s updating evolution is shown in figure 13. We can see that after
some volatile updating, the calibration algorithm can find the approximately correct
values of the parameters β = 0.946 and γ = 1.030, which, given that the algorithm
needs to pin down two targets at the same time, are quite close to the actual simulated
values of β = 0.95 and γ = 1.0.

19

Figure 13: Parameter β and γ updating process, with initial values of β = 0.9 and
γ = 1.4, aiming to find β = 0.95 and γ = 1.0.

Additionally, along with the parameter calibration, it is also convenient to construct
the two target indices individually as a function of β and γ. The two functions are plotted
in figure 14 and 15 as two 3D plots.

These two figures nicely correspond to the previous assumptions that the discount
factor β captures the variation of the average interest rate, while the relative risk aversion
parameter γ captures the variation of the volatility of the relative consumption. It is
also economically interpretable that the discount factor β and the average interest rate
Rt are negatively correlated, since intuitively interest rate should be the inverse of the
discount factor β. Also, for relative risk aversion parameter γ, it is negatively correlated
with the standard deviation of relative consumption σ(Ct+1

Ct
) because this considers the

fact that the more risk-averse one is, the more willingly one would like to smooth out
their lifetime consumption choices, leading to less volatile relative consumption ratios,
which is captured by σ(Ct+1

Ct
).

Nevertheless, we can see that the function surfaces in the two figures are not per-
fectly smooth. I think this is possibly due to the fact that the average interest rate
and the standard deviation of relative consumption are both subject to the simulation
shocks generation randomness. Additionally, simulating more periods may help with the
against the “waves” on the function surfaces.

20

Figure 14: Average interest rate Rt as function of β and γ.

21

Figure 15: Relative consumption standard deviation σ(Ct+1

Ct
) as function of β and γ.

6 A Model Featuring Incomplete Markets with Id-

iosyncratic Shocks

6.1 Model Description

After solving the benchmark Brock-Mirman model, I aim to solve a more complicated
model featuring incomplete markets as well as idiosyncratic shocks. The model I am

22

using is a simplified version inspired by Heaton and Lucas (1996)[7]. This model encom-
passes many ingredients that appear in recent macroeconomic studies, such as incomplete
markets, occasionally binding constraint, non-stationary shock process, and asset pric-
ing with non-trivial market-clearing conditions. Therefore, I think it is a good model to
solve after the benchmark model.

It is an incomplete-markets model with two representative agents i ∈ I = {1, 2}
who trade in bond b. b1t and b2t denote the bond holding for the first and second agent
at the current period, respectively. pbt denotes the bond price at time t. The aggregated
state z ∈ Z, which consists of agents’ income hit and aggregate endowment Y a

t , follows
a first-order Markov process.

Agent i takes the bond price as given and maximizes their inter-temporal expected
utility:

max Et
[∞∑
n=0

βn
(cit+n)

1−γ

1−γ

]
(11)

s.t.

cit + pbtb
i
t ≤ bit + hit

bit+1 ≥ Kb
t

where hit denotes the agent’s income, and Y a
t = h1t+h

2
t denotes the aggregate endowment.

The borrowing limit is set to be a constant fraction of the worst-case yearly income, i.e.,
Kb
t = K̄bhit(zworst).

In equilibrium, prices are determined such that markets clear in each shock history:

b1t + b2t = 0 (12)

Therefore, the Euler Equation for agent i is written as follows:

−cit
−γ
pbt + β E

[
cit+1

−γ]+ µit = 0, i ∈ I = {1, 2} (13)

with the Karush-Kuhn-Tucker (KKT) conditions:

µit(b
i
t+1 −Kb

t) = 0 (14)

µit ≥ 0

6.2 Data Sampling

Next, following the same data generation process, I use TensorFlow 2.0 to sample the
state variables following specified distribution. The parameterization of the model is set
in table 8:

Here, the idiosyncratic shock z ∈ Z takes four values {0, 1, 2, 3}, featuring four
different situations where the representative agents are facing stochastic income shocks.

23

Relative risk aversion γ Aggregate endowment Y a
t Per capita income h1t

1 {7.00, 6.65} {3.75, 3.25, 3.60, 3.05}

Table 8: Parameterization of the economic parameters.

To simplify the problem and focus on the model solving with Deep Learning, I set the
transaction matrix to be:

Π =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25

 (15)

So that the evolution of the idiosyncratic shocks are set to be i.i.d., making it easier to
implement for the time being.

Moreover, the ranges for the input variables are presented as followed:

Bond holding b1t Discount factor β[
−1.525, 1.525

] [
0.90, 0.99

]
Table 9: Ranges for input endogenous state variable b1t and parameter β.

Here, I set the borrowing limits to be half of the worst-case yearly income for one
representative agent, which corresponds to the model setting that Kb

t = K̄bhit(z3).
The neural network is to approximate the equilibrium function θb,pb,µ : Z×R6 → R4

capturing the bond holding policy functions as well as the equilibrium price, such that
for all states x := [z, Y a, h1, h2, b1, b2, β]T ∈ Z ×R6, where z ∈ Z denotes the exogenous
shock, Y a denotes the aggregate endowment, hi, i ∈ {1, 2} denotes the per capita yearly
income for each agent, bi, i ∈ {1, 2} denotes the bond holding for the current period,
as well as the discount parameter β, the output Nρ(x) := [b1next, p

b, µ1, µ2]T where b1next
denotes the bond holding next period, pb denotes the equilibrium price for bond, and
µi, i ∈ {1, 2} the KKT multipliers for each agent, the Euler Equation 13 and the KKT
conditions 14 will always hold.

The training process of the algorithm takes longer than the previous ones to con-
verge to a small enough loss, which is reasonable considering the enhanced complexity.
Specifically, I set the learning rate αlearn = 1 × 10−4 for the first 50,000 episodes, and
switch to αlearn = 1× 10−5 for the second 50,000 episodes.

Noticing that the output [b1next, p
b, µ1, µ2]T , where pb, µ1 and µ2 are non-negative

values, while b1next is to be controlled within range [−1.525, 1.525], I use softplus activa-
tion functions for the first three nodes and sigmoid activation function modification for
the last one to ensure the prediction of the neural network is economically interpretable.

24

Episodes Learning
rate αlearn

Nodes
hidden
layers

Activations
hidden
layers

Activation
output layer

1 - 50,000 1× 10−4 {300, 300} {relu, relu} {softplus,
sigmoid}

50,000 - 100,000 1× 10−5 {300, 300} {relu, relu} {softplus,
sigmoid}

Table 10: Parameterization of the hyper-parameters.

6.3 Model Performance

Next, I summarize the neural network training performance on the new model with
idiosyncratic shocks. It can be seen from figure 16 that after the first 40,000 training
episodes, the loss has already converged to around 10−6, with very large volatility. After
switching the learning rate to αlearn = 1× 10−5, the loss remains steadily below 10−6.

The Euler equation errors as well as KKT condition errors after training on 1,000
sampled state variables are summarized in table 11.

mean max min 10 50 90

Euler equation error agent 1 (×10−2) 0.016 0.140 0.000 0.000 0.013 0.033
Euler equation error agent 2 (×10−2) 0.016 0.111 0.000 0.000 0.013 0.033
KKT condition error agent 1 (×10−2) 0.000 0.040 0.000 0.000 0.000 0.019
KKT condition error agent 2 (×10−2) 0.000 0.097 0.000 0.000 0.000 0.016

Table 11: Euler equation errors and KKT condition errors. The columns show the mean,
the max, and the min errors as well as the 10th, 50th, 90th percentile.

25

Figure 16: Evolution of the loss function during the first 50,000 episodes of training
with learning rate αlearn = 1 × 10−4 and the second 50,000 episodes with learning rate
αlearn = 1× 10−5.

To see how the neural network’s prediction evaluates the solution to this model,
I plot neural network output figure 17, 18, 19, and 20. These figures serve as a good
verification of the prediction accuracy.

Figure 17 presents the policy function b1t → b1t+1, which predicts that the bond
holding next period is almost linearly related to bond holding this period with two
different intercept values. More specifically, in the two “good” aggregate conditions
where the agent’s per capita income h1 ∈ {3.75, 3.6}, the bond holding next period has
larger values whereas in the two “bad” conditions where h1 ∈ {3.25, 3.05}, the values
for the bond holding next period will be smaller. This corresponds to the intuition that,
if the realization of the shock today is positive, then one would have incentive to hold
more assets in the future but not borrowing them, and vice versa.

Figure 18 shows the equilibrium bond prices with each shock. When the aggregated
endowment Y a = 7.0, the equilibrium bond prices are around 0.975, whereas when
Y a = 6.65, the equilibrium bond prices drop to below 0.94. Also, at the two ends of the
b1 limits, the bond prices go up with the spikes, which corresponds to the occasionally
binding borrowing constraints.

Figure 19 and figure 20 show the prediction of KKT multipliers for both agents.
According to these two figures, the KKT multipliers for agent 1 and agent 2 are perfectly
symmetrical, due to the market clearing conditions. Besides, for agent 1, the borrowing
constraint is mostly binding when the idiosyncratic shock z ∈ {1, 3} realizes, which
means the per capita income h1 ∈ {3.25, 3.05}, namely, the “bad” conditions for agent

26

1. Therefore, they would be willing to borrow more bond assets while they would
encounter the borrowing constraints. The “worse” the situation is, the more binding the
borrowing constraints are.

Figure 17: Bond holding this period b1 v.s. Bond holding next period (Neural network
prediction) b1next.

Figure 18: Bond holding this period b1 v.s. Equilibrium bond price (Neural network
prediction) pb.

27

Figure 19: Bond holding this period b1 v.s. KKT multiplier for agent 1 (Neural network
prediction) µ1.

Figure 20: Bond holding this period b1 v.s. KKT multiplier for agent 2 (Neural network
prediction) µ2.

Furthermore, figure 21, 22, 23, and 24 evaluate the Euler Equation errors as well as
the KKT condition errors for each of the shocks generated by the neural network. The
Euler Equation errors are mainly below 5× 10−3, and the KKT condition errors are all

28

below 2× 10−3. The reached accuracy demonstrates that the implemented method can
compute satisfactory approximations.

Figure 21: Bond holding this period b1 v.s. Euler Equation error for agent 1.

Figure 22: Bond holding this period b1 v.s. Euler Equation error for agent 2.

29

Figure 23: Bond holding this period b1 v.s. KKT error for agent 1.

Figure 24: Bond holding this period b1 v.s. KKT error for agent 2.

6.4 Parameter Calibration

I illustrate the parameter β calibration for this model to match real-world data. Similarly
to section 4.5, I simulate 1,000 different states with 500 evolving periods, then compute
the average interest rate r = 1

pb
predicted by the neural network model.

30

The figure 25 shows the simulated average interest rate versus the range of β, which
is very similar to figure 6. The discount factor β and the average interest rate are
negatively correlated.

To calibrate β with the appropriate interest rate which reflects the nature of the
inverse relationship with the bond price, I decide to use the U.S. Treasury Yield Curve
Rates with 30-year maturity4, which is 2.17% at the time of writing. Therefore, I plot
figure 26, confirming that the error function is perfectly convex and ready to be calibrated
with parameter β.

Using the same structure of the objective function 9 previously defined, I set the
initial value of βguess = 0.92 and use the gradient descent approach to update the new
parameter value until the objective function reaches below 1×10−5. The result is shown
in figure 27, which indicates that the true β value should be 0.978.

Figure 25: Average Interest Rate (Simulated with the prediction) v.s. Range of β.

4The Daily Treasury Yield Curve Rates can be found on the official website of U.S. Depart-
ment of the Treasury. (See e.g. https://www.treasury.gov/resource-center/data-chart-center/
interest-rates/pages/textview.aspx?data=yield)

31

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/pages/textview.aspx?data=yield

Figure 26: Empirical Errors v.s. Range of β with rtarget = 1.0217.

Figure 27: Evolution of βguess using gradient descent approach.

32

7 Practical issues

7.1 Loss Function Implementation

The inverse of relative error While trying to solve the benchmark model with
the extension of more parameters described in section 5.1, it has proven challenging to
implement the normal relative consumption error e

REEcap
x (ρ) as described in equation 6

within the loss function construction. I think it is mainly due to the fact that the division
calculation is handled poorly by the computer when the predicted Ct values, as the
denominators, are sometimes not distinguishable from 0. Hence, the loss function tends
to have very large spikes during the training process and is not able to find the correct
policy function solutions. As shown in figure 28, the loss function cannot converge during
the entire training process compared to the nicely converging loss function in figure 9.
Also, as shown in figure 29, the neural network without doing the inverse implementation
is not able to predict reasonably accurate policy functions as opposed to figure 11.

The solution I find helpful to overcome this issue is using the inverse of the relative
consumption error, which is then defined as:

eREEcap
x (ρ) :=

Ct

β Et
[
αAt+1K

α−1
t+1 Ct+1

−γ]− 1
γ

− 1. (16)

Naturally, this modification avoids the division calculation since it gets rid of it by
just using multiplications while retaining the ability to capture the quantities of relative
consumption errors.

33

Figure 28: Evolution of the loss function with the same hyper-parameters as described
in Table 6. See comparable loss function evolution figure 9.

Figure 29: Capital holding this period v.s. Consumption this period (Simulated with
neural network prediction).

34

7.2 Redundant Information for Neural Networks

Adding more information as input variables During the process of solving the
model featuring incomplete markets with idiosyncratic shocks described in section 6.1,
one finding is that adding more information as the input variables to feed neural networks
will help improve the performance of the algorithm.

More concretely, before passing redundant information to the input space, the di-
mension of the input space x := [z, Y a, h1, b1, β]T . Afterwards, during loss function
construction I explicitly set h2 = Y a − h1 as well as b2 = 0 − b1. Theoretically, this
approach should be equivalent to setting the input space as x := [z, Y a, h1, h2, b1, b2, β]T

while clarifying the relationships between h1, h2, b1, and b2 before passing them to
the input space. However, empirically using the latter approach obtains a better per-
formance of neural networks. As mentioned in the paper of Azinovic, Gaegauf, and
Scheidegger (2019)[1], passing redundant information to the neural networks, increasing
the dimension of the input space stabilizes the learning process.

As shown in figure 30, the loss function without adding h2 and b2 gets stuck between
10−5 and 10−6, without the tendency to decrease, whereas in figure 16 it successfully
decreases to below 10−6. Additionally, it is shown in figure 31 that without increasing
the input dimension, the neural network predicts very small KKT multipliers for agent
2, while predicting similar KKT multipliers for agent 1 correctly. This serves as a
confirmation of the importance of passing redundant information as input variables.

Figure 30: Evolution of the loss function with the same hyper-parameters as described
in Table 10. See comparable loss function evolution figure 16.

35

Figure 31: Prediction of the KKT multiplier for agent 2 µ2.

Redundant equilibrium conditions While constructing the loss function for model
with idiosyncratic shocks, I add redundant information about the KKT multiplier con-
ditions for next period as well. Concretely, I include the KKT conditions for the current
period:

µit(b
i
t+1 −Kb

t) = 0 (17)

as well as the KKT conditions for next period together to the loss function:

µit+1(b
i
t+2 −Kb

t+1) = 0 (18)

However, as figure 32 shows, the empirical loss also converges to below 1× 10−6, which
implies the implementation is probability not that necessary. Comparing the loss func-
tion figures 32 and 16, it can be seen that within the same amount of episodes of training
and hyper-parameter setting, adding redundant equilibrium conditions results in slightly
larger errors, even though both cases have achieved satisfactory approximations. This
indicates that adding redundant equilibrium conditions to the cost function does not
play as important role as adding redundant information explicitly to the input space.

36

Figure 32: Evolution of the loss function with the same hyper-parameters as described
in Table 10. See comparable loss function evolution figure 16.

8 Conclusion

In this thesis, I explore the possibility to solve the model from Brock and Mirman
(1972)[4] as well as the simplified version of model from Heaton and Lucas (1996)[7]
using deep learning with expanding of the input to ranges of model parameters within
the context of TensorFlow 2.0. Additionally, I successfully accomplish the parameter
calibration with the interaction of the real-world data, the average annual return of
S&P500 index and the U.S. Treasury Yield Curve Rates. Furthermore, I investigate the
relationships between different economic indices and economic model parameters.

Concretely, I solve the two models mentioned above using the method of minimizing
Euler equation residuals on 1,000 sampled state variables and stochastic shocks, as well
as ranges of economic parameters. The first model serves as a benchmark since it can
already be solved analytically, and I showcase that, using deep learning, a satisfactory so-
lution approximation can be achieved. The second model is more complicated, featuring
incomplete markets, occasionally binding constraint, non-stationary shock process and
asset pricing with non-trivial market-clearing conditions. Additionally, adding the eco-
nomic parameters into the input space provides the possibility of parameter calibration,
which will contribute to the economic policy construction, economic decision-making,
etc.

My thesis serves as a possible starting point on further research on solving dynamic
economic models with the extension of ranges of economic parameters as well as param-

37

eter calibration matching with real-world data. The future possible research directions
include: exploring additional parameter’s extension into neural networks, deeper under-
standing of how and why neural networks can overcome the “curse of dimensionality”,
and hyper-parameter tuning as well as neural network architecture performance com-
parison.

38

9 References

[1] Marlon Azinovic, Luca Gaegauf, and Simon Scheidegger. Deep equilibrium nets.
Available at SSRN 3393482, 2019.

[2] Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen. Deep optimal stopping.
Journal of Machine Learning Research, 20:74, 2019.

[3] Richard E Bellman. Adaptive control processes: a guided tour, volume 2045. Prince-
ton university press, 2015.

[4] William A Brock and Leonard J Mirman. Optimal economic growth and uncer-
tainty: The discounted case. Journal OF Economic Theory, 4:479–533, 1972.

[5] Victor Fonseca Duarte. Gradient-based structural estimation. Working paper, 2018.

[6] Philipp Grohs, Fabian Hornung, Arnulf Jentzen, and Philippe Von Wurstemberger.
A proof that artificial neural networks overcome the curse of dimensionality in
the numerical approximation of black-scholes partial differential equations. arXiv
preprint arXiv:1809.02362, 2018.

[7] John Heaton and Deborah J Lucas. Evaluating the effects of incomplete markets on
risk sharing and asset pricing. Journal of political Economy, 104(3):443–487, 1996.

[8] Kenneth L Judd. Projection methods for solving aggregate growth models. Journal
of Economic theory, 58(2):410–452, 1992.

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[10] Dirk Krueger and Felix Kubler. Computing equilibrium in olg models with stochas-
tic production. Journal of Economic Dynamics and Control, 28(7):1411–1436, 2004.

[11] Michael JP Magill. A local analysis of n-sector capital accumulation under uncer-
tainty. Journal of Economic Theory, 15(1):211–219, 1977.

[12] Lilia Maliar, Serguei Maliar, and Pablo Winant. Will artificial intelligence replace
computational economists any time soon? 2019.

[13] Simon Scheidegger and Ilias Bilionis. Machine learning for high-dimensional dy-
namic stochastic economies. Journal of Computational Science, 33:68–82, 2019.

39

	Introduction
	Literature Review
	The Benchmark Economic Model
	Model Description
	Methodology

	Deep Learning Implementation
	Data Sampling
	Loss Function
	Model Training
	Model Performance
	Parameter Calibration

	Extending Benchmark Model Input with More Parameters
	Input Extension
	Model Performance
	Parameter Calibration

	A Model Featuring Incomplete Markets with Idiosyncratic Shocks
	Model Description
	Data Sampling
	Model Performance
	Parameter Calibration

	Practical issues
	Loss Function Implementation
	Redundant Information for Neural Networks

	Conclusion
	References

